Error bounds for convex constrained systems in Banach spaces

نویسندگان

  • Wen Song
  • WEN SONG
چکیده

In this paper, we first establish both primal (involving directional derivatives and tangent cones) and dual characterizations (involving subdifferential and normal cones) for the local (global) error bounds of constrained set-valued systems; as an application, we then derive both primal and dual characterizations for the local (global) error bounds of the constrained convex inequality systems in a general Banach space and also some sufficient conditions. The obtained results improve or generalize some known results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of Error Bounds for Convex Constraint Systems in Banach Spaces

This paper studies stability of error bounds for convex constraint systems in Banach spaces. We show that certain known sufficient conditions for local and global error bounds actually ensure error bounds for the family of functions being in a sense small perturbations of the given one. A single inequality as well as semi-infinite constraint systems are considered.

متن کامل

Stability of error bounds for convex constraint

5 This paper studies stability of error bounds for convex constraint systems 6 in Banach spaces. We show that certain known sufficient conditions for local 7 and global error bounds actually ensure error bounds for the family of func8 tions being in a sense small perturbations of the given one. A single inequality 9 as well as semi-infinite constraint systems are considered. 10 Mathematics Subj...

متن کامل

On some fixed points properties and convergence theorems for a Banach operator in hyperbolic spaces

In this paper, we prove some fixed points properties and demiclosedness principle for a Banach operator in uniformly convex hyperbolic spaces. We further propose an iterative scheme for approximating a fixed point of a Banach operator and establish some strong and $Delta$-convergence theorems for such operator in the frame work of uniformly convex hyperbolic spaces. The results obtained in this...

متن کامل

On error bounds for lower semicontinuous functions

We give some sufficient conditions for proper lower semicontinuous functions on metric spaces to have error bounds (with exponents). For a proper convex function f on a normed space X the existence of a local error bound implies that of a global error bound. If in addition X is a Banach space, then error bounds can be characterized by the subdifferential of f . In a reflexive Banach space X, we...

متن کامل

Weak convergence theorems for symmetric generalized hybrid mappings in uniformly convex Banach spaces

‎In this paper‎, ‎we prove some theorems related to properties of‎ ‎generalized symmetric hybrid mappings in Banach spaces‎. ‎Using Banach‎ ‎limits‎, ‎we prove a fixed point theorem for symmetric generalized‎ ‎hybrid mappings in Banach spaces‎. ‎Moreover‎, ‎we prove some weak‎ ‎convergence theorems for such mappings by using Ishikawa iteration‎ ‎method in a uniformly convex Banach space.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007